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Magnetic field amplification by the motion of an electrically conducting fluid is
studied, using a rotating plane-layer geometry. The fluid flow is driven by convection,
and by a moving bottom boundary, which leads to an Ekman layer localized at the
base of the system. The system thus has the structure of an interface dynamo, with
convection lying over a thin layer of shear.

The combination of shear in the Ekman layer and convection above leads to
amplification of seed magnetic fields. In kinematic regimes the magnetic field is
mostly localized in sheets in the shear layer, but thin tongues are pulled out by
the convection above and folded. The nonlinear saturation of these growing fields is
studied at moderately high values of magnetic Reynolds number and Taylor number.
It is found that the sheets of field tend to gain fine-scale structure when the dynamo
saturates, breaking up into tubes, and the fluid flow shows complex time-dependence.
Although the magnetic field lies predominantly within the highly sheared Ekman
layer, this flow remains remarkably unchanged despite the action of Lorentz forces.
Instead, the effect of the field is to suppress or modify the convection above. A simple
alpha–omega dynamo model is set up, and gives some insights into the dynamo
processes occurring in the full magnetohydrodynamic simulation.

1. Introduction
Astrophysical, geophysical and planetary dynamos are dominated by processes of

convection and shear. Our aim in this paper is to study the nonlinear evolution
and saturation of magnetic fields in an interface dynamo, with shear and thermal
convection, relevant to understanding the generation of the Sun’s magnetic field. The
early modelling of the solar dynamo (see, for example, Moffatt 1978; Parker 1979;
Krause & Rädler 1980) included the effects of shear and convection, modelled by
an α-effect, and showed how dynamo waves can be generated by an αω dynamo
mechanism. With the correct signs for the shear and α-effect, the waves propagate
from poles to equator in agreement with solar observations.

This view ran into problems when large-scale numerical simulations of rotating
convection in a spherical shell (Gilman 1983; Glatzmaier 1984; 1985a, b) gave robust
poleward migration of magnetic fields. A few years later, helioseismological results
(Brown et al. 1989; Dziembowski, Goode & Libbrecht 1989; Goode et al. 1991;
Gough, Sekii & Stark 1996) revealed that the angular velocity profile of the Sun
includes a thin layer of shear in a region between the inner radiative zone and the
outer convection zone. This thin layer of shear is known as the tachocline (Spiegel
& Zahn 1992) and may indicate the presence of a relict magnetic field within the



26 P. Zhang, A. D. Gilbert and K. Zhang

radiative zone, decoupled from the dynamo-generated field that we observe (Gough
& McIntyre 1998; Garaud 2002).

The discovery of the tachocline led to the idea that the Solar magnetic field may
be generated in this strong layer of shear, which would provide an ω-effect (e.g.
Roberts 1992; Weiss 1994). There are a number of possible ways in which an α-effect
could arise to complete the dynamo cycle. These include convection, hydrodynamical
instability (e.g. Dikpati & Gilman 2001) and magnetic buoyancy (e.g. Thelen 2000).
From this point, one approach is to parameterize the three-dimensional processes
that give an α-effect and turbulent diffusivities, obtaining butterfly diagrams that can
be compared with solar data (Deluca & Gilman 1986, 1988; Parker 1993; Prautzsch
1993; Rüdiger & Brandenburg 1995; Tobias 1996; Roald 1998; Tobias, Proctor &
Knobloch 1998; Griffiths et al. 2001; Zhang et al. 2003). Alternatively, one can
simulate a simplified magnetohydrodynamic system by means of three-dimensional
simulations, and understand its behaviour in various regimes. This has the advantage
that primitive equations are employed, and so avoids the uncertainty in parameterizing
complex turbulent transport effects, the disadvantage being that the parameter values
obtainable are far from those pertaining to the Sun. We will adopt this second
approach in this paper, and set up a model based on convection in the presence of
rotation and a thin layer of shear.

There have been many studies of dynamos in rotating convective flows, beginning
with Childress & Soward (1972), who showed that an α-effect can be obtained
asymptotically at low magnetic Reynolds numbers and give growth of large-scale
magnetic fields. Matthews (1998) further showed that kinematic dynamo action can
occur in weakly nonlinear regimes with fields being amplified on the scale of the
flow, at large magnetic Reynolds numbers. Simulations by St Pierre (1993), Jones &
Roberts (2000) and Rotvig & Jones (2002) have pushed these results into strongly
nonlinear, turbulent regimes, in the limit of small Ekman number. These studies
adopted a rotating plane-layer geometry. A different approach was pioneered by
Busse (1975) which is to incorporate elements of spherical geometry in a rotating
annulus model with inclined top and bottom surfaces. This allows Rossby waves to
be driven by convection, and dynamo action in such a flow was studied by Kim,
Hughes & Soward (1999, 2004). Other relevant simulations include dynamo action in
convection over a region of stable stratification (Brandenburg et al. 1990; Nordlund
et al. 1992; Tobias et al. 2001), in accretion disks dominated by Keplerian shear
and hydromagnetic instability (Brandenburg et al. 1995), in convective flows in a
rapidly rotating sphere (Busse 2002) and in shear with magnetic buoyancy providing
an α-effect (Cline, Brummell & Cattaneo 2003).

The aim in this paper is to study a fully hydrodynamical interface dynamo in
a plane-layer geometry by means of three-dimensional numerical simulations. The
model was introduced in Ponty, Gilbert & Soward (2001, hereinafter referred to as
paper I), and is motivated as a classical fluid flow with some features in common with
the solar tachocline and the convection zone just above it. A plane-layer geometry
is adopted, based on an approximation to spherical geometry at a co-latitude ϑ , as
depicted in figure 1. The plane layer is subjected to rotation and heating, leading
to thermally driven convection. The additional feature present is that the bottom
boundary has a velocity U0 as shown and, with no-slip boundary conditions, this
gives an Ekman–Couette shear flow across the plane layer. In the limit of strong
rotation, this flow becomes an Ekman layer localized at the bottom boundary. There
is a corresponding Ekman flux in the perpendicular direction (which in the solar
context would be returned as part of a meridional circulation at higher z, i.e. greater
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Figure 1. Geometry for the study. (a) Spherical shell geometry is approximated as
(b) plane-layer geometry. (c) Schematic picture of the fluid flow with an Ekman layer at
the base, and convective rolls in the interior.

radii). Note that there is no Ekman boundary layer generated at the top boundary; the
horizontal pressure gradient, which is zero in our frame of reference, is not Galilean
invariant in a rotating reference frame.

This hydrodynamical system allows a rich array of instabilities, including Taylor–
Couette, convective, and Ekman instabilities, as discussed in Matthews & Cox (1997),
Hoffman, Busse & Chen (1998) and Ponty, Gilbert & Soward (2003). These can lead
to flows sufficiently complex to give dynamo action, and this was explored numerically
in paper I, in the kinematic regime, with emphasis on the limit of large magnetic
Reynolds number. The flows were taken to be two-dimensional, depending on two
coordinates, which is correct at the onset of instability, and allowed the consideration
of magnetic modes with a wavenumber k in a perpendicular direction. The paper
first explored dynamo action in flows resulting from equilibrated Ekman instabilities,
which occur when a Reynolds number based on the thickness of the Ekman layer
is sufficiently large. The resulting secondary fluid flow lies predominantly within the
Ekman layer with roll axes approximately aligned with the x-axis, that is East–West
for the geometry in figure 1. The flows give dynamo action, with magnetic fields
taking the form of Ponomarenko modes, spiralling tubes of field in a convective
cell, or separatrix modes, sheets of field localized at hyperbolic stagnation points
and along heteroclinic connections. These are slow dynamo modes (e.g. Childress &
Gilbert 1995; Gilbert 2003) as the flow is steady in a translating frame and two-
dimensional.



28 P. Zhang, A. D. Gilbert and K. Zhang

For the second class of flows studied in paper I, parameter values were used where
the Ekman layer is hydrodynamically stable, but the fluid is convectively unstable. The
convective rolls generated tend to be excluded from the Ekman layer, and lie above it
with their axes approximately aligned with the y-axis, that is North–South. This gives
a natural interface dynamo: convection above a thin layer of shear. The magnetic
fields generated have a strong component within the shear layer, and undergo slow
dynamo action when the flow is steady (in a translating frame) and two-dimensional,
and fast dynamo action (with sheets of field accumulating in regions of chaotic
particle paths) when the flow becomes unsteady (in every reference frame).

In this paper, we extend our study into nonlinear regimes. We focus on the case
of convective instability only; the case of Ekman instability will be the focus of a
future study. Our interest is in the saturation of the magnetic fields in the convective
dynamos identified in paper I. As discussed above, this gives a natural interface
dynamo, resulting from a classical hydrodynamic geometry, with no assumptions
about transport coefficients, and our aim is to understand fundamental issues about
the nature of equilibration by means of numerical simulations.

Since the code we use is fully three-dimensional, we are not able to explore
parameter space in much detail, and so we have to focus on a few key issues. The
first issue is the nature of dynamo saturation: does the magnetic field disrupt the
layer of shear, or modify the convection, or some combination, when it equilibrates?
Secondly, what happens to the magnetic field in nonlinear regimes: does it adopt
fine-scale structure, on the Ekman-layer scale, or does it prefer to seek the largest
scale in the system? Thirdly, to what extent can we model the resulting dynamo by
a traditional αω formulation? Finally, what is the impact of the layer of shear in
organizing the magnetic field: how does a purely convective dynamo differ from one
with convection over a layer of shear? We set up the system in § 2, explore these and
other issues in § § 3–4, and give concluding discussion in § 5.

2. Governing equations
Our starting point is the system of equations for Boussinesq convection including

a magnetic field and Lorentz force feedback, governed by

ρ0(∂tU + U · ∇U + 2Ω × U) = −∇Π + ρg + µ−1(∇ × B) × B + ρ0ν∇2U, (2.1)

∂t B = ∇ × (U × B) + η∇2 B, (2.2)

∂tT + U · ∇T = κ∇2T , (2.3)

∇ · U = 0, ∇ · B = 0, (2.4)

and ρ = ρ0(1 − α(T − T0)).
We adopt a plane-layer geometry, having in mind a local approximation at co-

latitude ϑ to a rotating spherical shell of fluid, with z pointing vertically upwards, x

east and y north, as indicated in figure 1. We therefore take the acceleration due to
gravity,

g = −gez (2.5)

and rotation vector

Ω = ΩΩ̂ = Ω(sin ϑ ey + cosϑ ez). (2.6)

The plane layer is defined by 0 � z � h and we take it to be periodic in x and y with
periods hLx ≡ 2πh/kx and hLy ≡ 2πh/ky , respectively.
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We impose perfectly conducting boundary conditions

Bz = 0, ∂zBx = ∂zBy = 0 (z = 0, h), (2.7)

at the top and bottom of the layer. We allow a temperature contrast to drive
convection, and use no-slip boundary conditions for the flow, with

U = U0ex, T = T0 + �T (z = 0), (2.8)

U = 0, T = T0 (z = h). (2.9)

The bottom boundary has a velocity U0 in the x-direction, which will drive a shear
flow across the plane layer, as in paper I.

This system is non-dimensionalized using the scale h and the thermal time scale
h2/κ by setting

x = hx ′, t =
h2

κ
t ′, U =

κ

h
U ′, (2.10)

θ =
νκ

αgh3
θ ′, Π =

ρ0κ
2

h2
Π ′, B =

(ρ0µ)1/2κ

h
B′, (2.11)

where θ is the deviation from the linear, conductive profile satisfying the boundary
conditions. After dropping the dashes, the system becomes

∂tU + U · ∇U + τPΩ̂ × U = −∇Π + Pθez + (∇ × B) × B + P∇2U, (2.12)

∂tθ + U · ∇θ = Ra Uz + ∇2θ, (2.13)

∂t B = ∇ × (U × B) + q−1∇2 B, (2.14)

∇ · U = 0, ∇ · B = 0, (2.15)

with boundary conditions for temperature deviation and magnetic field

θ = Bz = ∂zBx = ∂zBy = 0 (z = 0, 1), (2.16)

and for the flow,

U = RePex (z = 0), U = 0 (z = 1). (2.17)

The dimensionless parameters introduced are

Ra =
αgh3�T

νκ
, Re =

U0h

ν
, τ =

2Ωh2

ν
, P =

ν

κ
, q =

κ

η
, (2.18)

that is, the Rayleigh number, Reynolds number, the square root of the Taylor
number, the Prandtl number and the Roberts number. Our plane-layer magneto-
hydrodynamical system is completely specified by the parameter set

{Ra, Re, τ, P, q, ϑ, kx, ky}. (2.19)

Note that the Reynolds number Re is based on the imposed velocity U0 at the base
of the layer, and not on a measure of the flow velocity actually realized, which could
be different (for example if the flow were driven only by convection). We take τ � 0
and 0 � ϑ � π/2 (northern hemisphere), but allow the parameter Re to take either
sign, corresponding to the sign of U0.

The system permits a solution depending only on the vertical coordinate z, in which
B = 0, θ = 0 and the flow profile takes an Ekman–Couette form,

UEk(z) = RePΛ(z) = ReP(Λ1(z)ex + Λ2(z)ey), (2.20)
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where the Λi(z) satisfy

−2µ2Λ2 = Λ′′
1, 2µ2Λ1 = Λ′′

2, µ ≡
√

1
2
τ cosϑ, (2.21)

with Λ1(0) = 1 and Λ2(0) = Λ1(1) = Λ2(1) = 0. The full solution is given in equation
(29) of paper I; we simply note that in the limit of large τ (for ϑ �= π/2), the flow
becomes an Ekman layer localized at the bottom boundary,

Λ1(z) � e−µz cos µz, Λ2(z) � −e−µz sin µz (µ � 1), (2.22)

(there being no horizontal pressure gradient imposed in the system). Note that there
is a net flux in the −y-direction in UEk for ReP > 0, with maximum y-velocity

max
z

UEk,y = −2−1/2e−π/4ReP � −0.3224ReP at zmax = π/4µ, (2.23)

and zmax gives a convenient measure of the Ekman layer thickness. Sometimes it is
useful to subtract the Ekman-layer flow, giving

U = RePΛ(z) + u. (2.24)

This system allows a rich family of instabilities: convective instability is possible for
Ra > 0, Taylor–Couette (ϑ = π/2) for Re > 0, and Ekman (ϑ �= π/2) for Re �= 0, as
discussed in Ponty et al. (2003). As a rule of thumb, configurations with Re> 0 are
generally less stable than those with Re < 0. In this paper, we will only consider
configurations with positive values of Re.

The shear flow (2.20) on its own cannot support dynamo action, and so it is
necessary to follow a hydrodynamic or Ekman instability to a saturated state, and
then introduce a magnetic field. The kinematic evolution of such fields was studied
in a two-dimensional setting in paper I. To follow their nonlinear evolution and
saturation, a three-dimensional finite-difference code was written. This time steps the
system (2.12)–(2.15), written in terms of u from (2.24) with homogeneous boundary
conditions applied to θ , B and u (see (2.16), (2.17)); further details are given in
Appendix A.

3. Dynamo action in convection with shear
3.1. Parameters and kinematic evolution

In undertaking three-dimensional simulations, the scope to explore parameter space
is limited. The main run we study in this paper has the parameter values

Ra = 7500 � 2Rac, Re = 30, τ = 200, (3.1)

P = 1, q = 50, ϑ = 67.5◦, kx = 4.30, ky = 1.0, (3.2)

so that the box has dimensions of Lx × Ly × 1 � 1.46 × 6.28 × 1. These were chosen
to build on earlier work in paper I: the x-dimension gives the preferred scale of
convective rolls at onset, while the y-dimension is sufficiently large to allow the field
to develop structure on a range of scales. Our dynamical run is closely related to
a purely kinematic run shown in figure 7† of paper I, for which the parameters
are similar. The only important difference is that in paper I the Rayleigh number
Ra � 1.1Rac is close to critical, whereas ours is twice critical.

† In paper I for this figure, ky ≡ l is given as 8.5 whereas it should be 1.0.
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Figure 2. Convective flow in the kinematic regime, with parameter values (3.1), (3.2). The
flow components (U,V,W ) of U in (a) the (x, z)-plane and (b) the (y, z)-plane.

In the absence of convection and magnetic field, the values of Re and τ lead to an
Ekman layer localized near to the base of the plane layer, with thickness zmax � 0.127
in (2.23). The effect of then raising the Rayleigh number just above critical, as in
paper I, is to generate convective rolls which tend to lie above the Ekman layer (being
suppressed within the layer by the strong shear). The orientation of the convective
rolls is dominated by the rotation of the system and their axes are approximately
aligned with the horizontal component of Ω , that is, with the y-direction. The
effect of the Ekman layer is to change the orientation of the rolls at onset in an
infinite plane layer, from exact alignment, by an angle ε � 2.33◦. The effect is small
because the localized Ekman layer has little interaction with the convection at these
parameter values (see paper I and references therein). In our finite periodic plane-layer
geometry, the set of possible wavevectors is limited and so at onset, the roll axes are
exactly aligned with the y-direction, the resulting flow being shown schematically in
figure 1(c).

In our run, the Rayleigh number is increased to Ra � 2Rac, which has two effects.
First, the convection becomes more vigorous, although not so strong as to disrupt
the Ekman layer. Secondly, the flow bifurcates at Ra � 1.7Rac, and by Ra � 2Rac

has modest three-dimensionality, although it remains steady in a moving frame. The
flow takes the form of convective rolls with some variation in the y-direction, as
depicted in figure 2. Figure 2(a) shows the flow components on a slice of constant
y and figure 2(b) shows a slice of constant x. Clearly visible in U (figure 2a(i))
is the Ekman layer at the base of the layer; the W component in the (x, z)-plane
(figure 2a(iii)) indicates the presence of two convective rolls, while figure 2(b) shows
the three-dimensionality of the flow.
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Figure 3. Magnetic field in the kinematic regime, with parameter values (3.1), (3.2). The field
components Bx , By , Bz, and B = |B| in (a) the (x, z)-plane and (b) the (y, z)-plane; see (3.3)
and (3.4).

The magnetic field in the kinematic regime is shown in figure 3. Different quantities
are plotted to indicate different aspects of the magnetic field structure. Figure 3(a)
shows √

〈B2
x 〉y,

√
〈B2

y 〉y,

√
〈B2

z 〉y,

√
〈|B|2〉y, (3.3)

i.e. the field intensity, averaged over y. Figure 3(b) shows

〈Bx〉x, 〈By〉x, 〈Bz〉x,
√

〈|B|2〉x, (3.4)

and so gives an indication of the sign of the field (except figure 3b(iv)).
In figures 3(a)(iv) and 3(b)(iv) we see that most of the magnetic energy is in the

form of structures that are extended in the x-direction, and the field is predominantly
x-directed. The structures are flattened in the y-direction as seen in figure 3(b)(i), and
so form what we will refer to as sheets of field. This figure indicates that there are
essentially 4 sheets, 2 with field pointing in the −x-direction and 2 in the +x-direction.
This corresponds to a dominant n= 2 mode, where it is convenient to decompose the
field as

B(x, y, z, t) =
∑

n

B̂n(x, z, t) exp(inkyy). (3.5)

In paper I, these modes were decoupled as the flow was y-independent, but for the
present parameter values the modes are coupled because of three-dimensionality in
the flow field. Note that in paper I, insulating boundary conditions were employed; we
use perfectly conducting boundary conditions which have more of a trapping effect
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Figure 4. The kinetic energy EK (solid) and the magnetic energy EM (dotted) plotted on a
logarithmic scale as functions of time.

of field at the boundary. Tests indicate that this makes little difference to magnetic
field structure and kinematic growth rate in the presence of strong shear.

The magnetic field moves as a wave propagating in the −y-direction, an aspect we
will return to later. Although the field lies predominantly within the shear layer (see
also figure 8 below), the convection above it is important in drawing out tongues
of field, which are then folded back into the shear flow. This is particularly seen in
the Bz field, which suggests the dynamo could be classified as of αω type, with the
convection providing an α effect; we will discuss this further below.

3.2. Energies and transfers

Our main run starts with a seed magnetic field and the equilibrated convective flow
(figure 2), and follows the magnetic field through kinematic growth (figure 3) to
saturation. The key issue is to find suitable diagnostics to understand the wealth of
data potentially available. Two diagnostics are the total kinetic and magnetic energies,

EK = 1
2
〈|U |2〉, EM = 1

2
〈|B|2〉, (3.6)

where 〈 · 〉 denotes an average over the periodic box. Figure 4 shows the energies
plotted as a function of time.

In the kinematic regime, EK � 95 and the magnetic field grows as EM ∝ e2σ t with
growth rate σ � 3.05. In our system, the magnetic Reynolds number Rm is a diagnostic,
which depends on the flow that is realized. Using the root-mean-square velocity U

that is measured in the simulation, we define Rm in our non-dimensionalization by

Rm = Uq, U ≡
√

2EK. (3.7)

Kinematically Rm � 690, and the field has correspondingly fine-scale structure, as seen
in figure 3.

The field saturates at t � 3, leading to a state with complicated time-dependence
and relatively strong magnetic fields. Despite the large value of Rm, the magnetic
energy is about twice that of the kinetic energy, with

〈EK〉t � 50, 〈EM〉t � 120, (3.8)

and Rm reduced to Rm � 510.
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Figure 5. The kinetic energy components (a) EK1 (solid), EK2x (dash), (b) EK2y (dot) and
EK3 (dash-dot).

To understand the nature of the saturation in more detail, we decompose the
velocity field into four components with distinct dependencies on the coordinates,
and corresponding energies,

U = U1(z) + U2x(x, z) + U2y(y, z) + U3(x, y, z), (3.9)

EK = EK1 + EK2x + EK2y + EK3, (3.10)

with

U1 = 〈U〉x,y, U2x = 〈U − U1〉y, U2y = 〈U − U1〉x. (3.11)

This breaks the flow into a shear component U1, a component U2x independent of y, a
component U2y independent of x, and the remainder, a three-dimensional component
U3. If the flow were written in terms of Fourier modes exp(imkxx + inkyy), these four
components would correspond to: the (0, 0) mode, the modes (m, 0) with m �= 0, the
modes (0, n) with n �= 0, and the modes (m, n) with both m �=0 and n �= 0, respectively.

Figure 5 shows these kinetic energy components as functions of time. Focusing
first on the kinematic regime t < 1.5, the energy in the shear flow EK1 � 36 (solid),
dominated by the Ekman layer, is broadly similar to that in the y-independent
component EK2x � 50 (dash), which is dominated by the convective cells. The modest
three-dimensionality of the flow is indicated by the presence of the components
EK2y � 1.4 and EK3 � 8.

In the dynamical regime t > 3, the most significant feature is that the energy
in the shear flow EK1 (solid) is relatively unchanged. The magnetic field saturates
while having little effect on the underlying Ekman-layer flow. Measurements of the
discrepancy from the Ekman profile, measured by |U1 − UEk|2/2 (not plotted here)
show small fluctuations with time. In effect, U1 � UEk even in the dynamical regime.
The principal effect of the Lorentz force is to suppress the convection above the Ekman
layer. The energy component EK2x (dash) in figure 5 shows a marked reduction from
kinematic values, and then a bursty behaviour, varying from around 1 up to values
as high as 25.

Information about how the magnetic field is sustained within the dynamical regime
may be obtained from the energy equation for B,

∂tEM = 〈BiBjeij 〉 − q−1〈|∇ × B|2〉. (3.12)
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Figure 6. The transfer terms (a) T1 (solid), T2x (dash), (b) T2y (dot) and T3 (dash-dot).

The input of magnetic energy by stretching in the fluid flow is written in terms of the
rate of strain tensor eij = (∂iUj +∂jUi)/2. The corresponding energy equation for U is

∂tEK = −〈BiBjeij 〉 + P〈Uzθ〉 − P〈|∇U |2〉 − ReP〈∂zUx |z=0〉x,y, (3.13)

where the last term gives the input of kinetic energy through the motion of the lower
boundary.

We focus on the key transfer term T = 〈BiBjeij 〉, which may also be decomposed
into contributions T1, T2x , T2y and T3, from the distinct flow components U1, U2x ,
U2y and U3. Figure 6 shows these individual transfer terms as functions of time. It
may be seen that there is a consistent transfer T1 (solid) of energy into the magnetic
field from the shear flow U1, although this fluctuates much more than does the shear
flow itself (see figure 5). The convective flow component U2x also gives a net input of
energy T2x (dash) into the field, correlated with the strength of the flow itself (see E2x

in figure 5), and so showing large fluctuations with time. On the other hand, there
is a net loss of magnetic energy into the weak flow U2y , and no persistent sign of
transfer for the final three-dimensional component U3.

3.3. Magnetic field and flow structure

A snap-shot of the magnetic field in the saturated state is shown in figure 7. This may
be compared with the kinematic field in figure 3. We observe that the field remains
largely localized in the Ekman shear layer (whose thickness remains zmax � 0.13
dynamically), but instead of taking the form of sheets, appears to show structures
extended only in the x-direction, which we refer to as tubes of field (see, for example,
figures 7a(i) and 7b(i) and bear in mind the 2π × 1 dimensions in the (y, z)-plane).

To quantify the spatial localization of magnetic field, figure 8 shows the magnetic
energy EM (z) as a function of z,

EM (z) = 1
2
〈|B|2〉x,y, (3.14)

that is, averaged over x and y only. In figure 8(a) the profile is shown for the early,
kinematic regime, while in figure 8(b) a series of curves shows the profile at a number
of later times. We observe that, in each case, the field is localized in the Ekman layer,
but dynamically it broadens in scale. There is some effect of the perfectly conducting
boundary conditions in trapping magnetic field, at the top boundary, but the strongest
fields are localized away from the bottom boundary, in the region of maximum shear.
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Figure 7. Magnetic field for parameter values (3.1), (3.2), in the dynamical regime, at t = 24.
The plots are as in figure 3.
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Figure 8. Magnetic field profiles (a) in the kinematic regime, (b) at a number of times in the
dynamical regime. Plotted is EM (z) (horizontal axis) against z (vertical axis).

Figure 9 shows a similar comparison of the kinetic energy E(z) − E1(z) (taking out
the dominating shear component) for kinematic and dynamical regimes. The flow
shows considerable variation in time, but is generally suppressed dynamically. We
do not plot helicity here: the helicity is dominated by that in the Ekman flow U1.
When this is excluded, the remaining flow has a helicity profile that we measure very
approximately as

H (z) − H1(z) = 〈(U − U1) · ∇ × (U − U1)〉x,y � h0 sin 2πz, h0 � 550, (3.15)
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Figure 10. Butterfly diagram for the magnetic field diagnostic (3.16), plotted
in the (t, y)-plane.

in kinematic regimes. This is antisymmetric about the mid-point z = 1/2 as we would
expect for rotating convection (e.g. Childress & Soward 1972), while dynamically this
helicity is suppressed.

The tubes seen in figure 7 translate in the −y-direction, the direction of the y-
component of the Ekman flow (see (2.23)) but also evolve in time. As they are
extended in the x-direction and confined to a narrow band of z-values, it is useful to
plot an average over x and a slice at z = zmax,

B̂x(y, t) = 〈Bx(x, y, zmax, t)〉x (3.16)

as a function of t and y. This is done in figure 10 as a plot in the style of a ‘butterfly
diagram’. Each tube is revealed as a streak that crosses the plane, with life-times
comparable to the transit time of the wave. The diagram also reveals a larger-scale
coherence in the field, which shows groupings of tubes of similar sign, corresponding
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Figure 11. Magnetic energies EM(n) as a function of time with with n= 1 (solid), n= 2
(dash), n= 3 (dot).

to mode n= 1 in the y-direction (with modes defined by einy as y varies from 0 to 2π
here).

The loss of coherence of the magnetic field on smaller scales, sheets breaking into
tubes, is in accord with the results shown in figures 5 and 6. While the shear flow itself
remains largely time-independent, the transfer of energy T1 by stretching of magnetic
field in the shear becomes more intermittent, presumably as tubes of field are carried
into and out of the shear by the up–down convective motions.

To quantify the larger-scale modulation apparent in figure 10, we consider the
energies EM(n) in each of the magnetic modes in (3.5). Here, we set

EM(0) = 1
2
〈|B̂0(x, z)|2〉, EM(n) = 〈|B̂n(x, z)|2〉 (n � 1). (3.17)

so that

EM =

∞∑
n=0

EM(n). (3.18)

Figure 11 gives these energies as a function of time. We see that after an initial phase
in which the mode n= 2 is dominant, including the kinematic phase, mode 1 takes
over and the field adopts the largest scale available to it in the y-direction. Note,
however, that there are periods when other modes rise to similar levels to mode 1,
and then subside, e.g. t � 20. In fact, all modes plotted have comparable energies.

Although the dominance of mode 1 is unclear in figure 11 there is some evidence
that it is in fact controlling the functioning of the dynamo. In fluid flows dominated
by shear, it is natural to set up an αω model, in which the convective fluid motions are
parameterized by a transport coefficient α. Appendix B outlines a basic model of this
form. The key aspect we note is that such a model predicts dynamo waves. In these
waves, the mean Bx field is linked to the Bz field with a fixed phase shift. Although
it is difficult to measure α at large magnetic Reynolds number and particularly in
simulations such as ours because of the inhomogeneity of the system (i.e. lack of scale
separation) and the time required to obtain sensible averages (e.g. Cattaneo, Hughes
& Thelen 2002), it is worthwhile seeing whether such a phase relation exists. We
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define phases Φn(t), Ψn(t) of the x- and z-components of the magnetic modes (3.5),

fn(t)e
iΦn(t) = 〈ex · B̂n〉x,z, gn(t)e

iΨn(t) = 〈ez · B̂n〉x,z. (3.19)

The instantaneous phase velocity of a mode is, using just the x-component,

cn = −1

k

dΦn

dt
(k ≡ nky), (3.20)

though in a complex flow such as is realized in the nonlinear regimes we measure an
average cn via the change in phase �Φn over a period of time �t .

Figure 12(a) shows the scaled phases Φn(t)/k of the x-component of field for n= 1 –
4 and the latter part of the main run. There is clear approximate linear growth in all
phases, corresponding to coherent structures involving many modes travelling with
phase speed cn � −4 in the y-direction. Figure 12(b) shows the scaled phases Ψn(t)/k

for the z-component of field. Here, the only coherent behaviour is demonstrated by
the n= 1 mode, which shows linear growth with the same phase speed. For n=1
only, the phase shift Ψn(t) − Φn(t) between the x and z fields is plotted in figure 12(c).
This shows some ‘glitches’ where it slips through 2π, but generally only varies in a
moderate band of approximately 1–2.5. Plainly, the x- and z-components of field are
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Re τ q EK EM Rm 〈Uzθ〉

30 200 50 50 120 500 2700
30 200 15 45 110 140 2000
30 200 5 60 70 40 3300

Table 1. Time-averaged kinetic and magnetic energy at different q , together with magnetic
Reynolds number and rate of working of the buoyancy force.

locked together in terms of phase for the n= 1 mode only, with a phase shift similar to
that predicted by the simple αω modelling given in Appendix B. Further comparison
with the αω model is given in this appendix. Here, we note only that the phase
velocity of the dynamo wave involves a competition between the Ekman pumping
velocity in the −y-direction, and the velocity induced by αω dynamo processes, which
drives field in the +y-direction.

In short, we conclude that in the full numerical simulation, magnetic-field generation
is compatible with an αω dynamo wave, dominated by mode n= 1, which modulates
the smaller scale tubular structures adopted by the magnetic field.

4. Dynamo action with varying parameters
We have studied the saturation of a dynamo in which shear and convection played

key roles, and in which the magnetic Reynolds number was large, allowing the field
to adopt complex structure and a range of scales. It is of interest to vary all of the
parameters Re, Re, τ , q from (3.1) and (3.2), to understand parameter dependence,
but this is impractical. Instead we focus on our main run and consider reducing any
one of these parameters to switch off one effect, holding the others constant, and see
how the dynamo behaviour responds, looking for useful points of comparison.

4.1. Runs with varying q

We first consider reducing q , which will in turn tend to reduce the magnetic Reynolds
number Rm, although the latter, of course, is a diagnostic, depending on the actual
flow realized. Table 1 gives results for runs at varying q . These runs were started
using the field and flow from our main run at the time t = 24 and the runs are rather
shorter than the main run; we note that this does not allow the possibility of the field
slowly evolving to a totally different regime. We see that there is little variation in the
kinetic energy, which remains EK � 50. The magnetic energy increases from EM � 70
at q = 5 to a plateau of around EM � 120 at q = 50.

For q = 5, the value of Rm � 40 is moderate, the dynamo is close to critical, and
the convection vigorous, with more transfer of energy to the flow from the buoyancy
force, as measured by 〈Uzθ〉. Note that this transfer shows large fluctuations of
±800–1000 about these average values, as the magnetic field turns the convection off
and on. At these low q values, the field becomes broader in structure, as shown in
figure 13, but remains a clear n= 1 dynamo wave, predominantly in the shear layer.
The phase speed and phase shift remain relatively unchanged.

4.2. Runs with varying Re

Now we consider reducing the shear parameter Re and so going from an αω dynamo
to a purely convective dynamo. Table 2 shows results for the main run and two
subsidiary runs beginning with weak initial magnetic fields. The most interesting
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Figure 13. Magnetic field for q = 5 in the dynamical regime. The plots are as in figure 3.

Re τ q EK EM Rm 〈Uzθ〉

30 200 50 50 120 500 2700
10 200 50 20 100 320 2400
0 200 50 35 30 420 3800

Table 2. Time-averaged kinetic and magnetic energy at different Re, together with magnetic
Reynolds number and rate of working of the buoyancy force.

comparison is between Re = 30 and Re =0. These flows are not precisely comparable,
as the shear and convection are not entirely independent; however, we observe
that the purely convective flow (Re = 0) supports a rather weaker magnetic field by
comparison with the runs including shear (Re = 10, Re = 30). In the purely convective
case, also, the field is largely trapped against the boundaries, having approximate
up–down symmetry, as seen in figures 14 and 15, and observed by Matthews (1998).
The perfectly conducting boundary conditions are probably playing an important
role here. The purely convective case is also less efficient as a kinematic dynamo,
having a growth rate of 0.71 (compared with 3.05 for Re =50). For Re= 0, there
are no travelling dynamo waves. The middle run, with Re= 10 shows a low value of
the kinetic energy, and supports a strong magnetic field. This confirms that shear is
important in generating organized strong magnetic fields and dynamo waves.

4.3. Runs with varying Ra and τ

We have considered cases with reduced Rayleigh number, which give broadly similar
results to the main run discussed above. The only differences emerge when the
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Figure 15. Magnetic field with Re= 0 in the dynamical regime. The plots are as in figure 3.

Rayleigh number is close to critical, and figures 16 and 17 show the energy in
the velocity and magnetic components for Ra =4150 � 1.1Rac. Here, the field and
the convective components of the flow show a bursty behaviour: as the field becomes
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Figure 17. Magnetic energies EM(n) as a function of time as in figure 11 for Ra= 4125.

strong, it suppresses the convection, leading to decay of field. This is followed by
increase of convection and then increase of field, in an irregular cycle.

Finally, we have considered reducing τ , which has the effect of thickening the
shear layer. The kinetic energy in the Ekman–Couette flow is increased, but the flow
gradients decrease, giving less intense stretching of the magnetic field. We have not
found any great differences when τ is reduced by half to τ =100. The average kinetic
energy is only increased slightly, and in the magnetic field mode n= 1 is still dominant,
but its contribution to the total magnetic energy is smaller.

If τ is decreased further to 50, the flow field changes its structure, as the
broader shear layer now makes rolls with axes aligned with the x-axis preferred.
The competition between the effects of shear and horizontal component of rotation
in aligning convective rolls is explored in Ponty et al. (2003). For this new convective
flow the magnetic field decays, and tests using the two-dimensional kinematic dynamo
code of Y. Ponty indicate that this flow is not a kinematic dynamo for q =50.
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5. Discussion
We have studied the saturation of dynamo instabilities in a classical fluid mechanical

system, which naturally has the structure of an interface dynamo. There is a thin layer
of shear at the base of the plane layer. Above it, and largely unaffected by the shear,
a flow is driven by thermal convection, with roll axes controlled by the horizontal
component of the rotation of the system. We find that the shear in the system plays
an important part in the dynamo process, and that magnetic fields can be understood
in terms of αω-dynamo waves, with the strongest component of field in the shear
layer. The clearest link is the phase relationship between the x- and z-components of
field seen in figure 12 for the mode n= 1 of largest y-scale in the system.

Despite this control of the n= 1 mode, the other modes possess significant amounts
of energy (figure 11) and, in fact, the physical space structure of the field shows tubes
of field (figure 7 being typical). The tubes have signs modulated by the n= 1 mode, but
the strongest fields have significantly smaller scale. This leads to a key conclusion: an
interface dynamo can support magnetic field comprising tubes of small scale, whose
sign is modulated on a larger scale. The comparison with the solar dynamo is of
interest: at the surface of the Sun we again see thin tubes of field, in terms of sunspots
and active regions, but the sign of the field has large-scale correlations given by the
Hale polarity laws. Of course, in the solar context there are other mechanisms, not
present in our simulations, such as magnetic buoyancy, that can also break up a sheet
of field into fine tubes (e.g. Wissink et al. 2000).

We have studied the mechanism for dynamo saturation. We find that the Ekman
layer of shear is very robust for the parameter values studied, and the effect of the
equilibrating magnetic field is to modify the convection above: in the context of αω

dynamos the magnetic field equilibrates by quenching the α-effect. Note that we have
not been able to explore whether this is a result of the modification of the overall
chaotic stretching properties of the flow (e.g. Brummell, Cattaneo & Tobias 2001;
Kim et al. 2004) because of the computational expense of following vectors in three
dimensions for long enough periods. Of course, in our simulation, the existence of
shear has an inevitability about it, as there is a fixed velocity difference of ReP between
top and bottom boundaries; however, we also found that the detailed Ekman-layer
profile remains essentially unchanged for our runs. In the solar context, there is
little evidence of an 11-year cyclic behaviour of the shear in the tachocline (Basu &
Antia 2003; Komm et al. 2003), and so assuming the solar dynamo operates with the
benefit of an ω-effect in the tachocline, α-quenching is likely to be the most important
saturation mechanism. Note, however, that there is evidence of torsional oscillations
penetrating deep into the convection zone, and it remains possible that these may
affect the tachocline (Vorontsov et al. 2002). One aspect that emerges in our study
is the competition between the propagation velocity of αω dynamo waves and the
perpendicular Ekman flux in the shear flow. In terms of solar modelling, this suggests
that the propagation velocity of dynamo waves with fields localized in thin layers of
shear could be a delicate matter.

Finally, we considered turning off and on various effects. Increasing the magnetic
diffusivity and so decreasing the magnetic Reynolds number gives a similar dynamo
with larger-scale magnetic field, equilibrating at lower energies. We observe that
turning off the shear, Re = 0, also leads to a dynamo with lower magnetic energy,
fields localized at top and bottom boundaries, and no propagating dynamo wave.
Reducing τ and so thickening the shear layer can lead to a restructuring of the
convective cells and switch off the dynamo, at least at the q values we have used.
Finally, when Ra is reduced to a weakly supercritical value, the dynamo operates
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in an intermittent fashion, with an irregular cycle of dynamo activity followed by
damping of convection and damping of magnetic field. Within the context of our
model and the limitations of the parameters we can use, shear Re > 0, convection
Ra > 0 and large magnetic Reynolds number, given by q , are all instrumental in
generating strong coherent magnetic fields.

We should stress again that our model is not intended directly to model the
tachocline and solar dynamo. Rather, it is a model that is put together to give
a classical fluid system that can function as an interface dynamo, and be explored
numerically. The parameters used, for example in (3.1), (3.2), are far from solar values.
Indeed, at a latitude of 67.5◦ the solar value of Re would be negative; rather, our
parameter values were chosen to link to earlier work. Varying Re and ϑ remains a
subject open for further work; we only note that the shear layer is most unstable
when Re and τ have the same sign. Boundary conditions could also be varied, and
it may be worthwhile exploring the effects of an electrically insulating medium for
z > 1, modelling the higher magnetic diffusivity present in the convection zone.

In terms of our parameters, if solar molecular values are used for the diffusivities,
very large numbers are obtained for Ra, Re and τ (e.g. Ossendrijver 2003), far beyond
what can be achieved numerically. Perhaps more importantly, the value of q we have
taken is large, whereas the solar value is much smaller, perhaps around q ∼ 10−3

and the Prandtl number P ∼ 10−7. The problems of studying dynamos at low q

are well-known. Our study, in which the magnetic field is allowed to develop finer
structure than the flow, is only one step in the direction of more astrophysically
relevant models and parameters.
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Appendix A
In our numerical code, we use centred differences on staggered grids to discretize

(2.12)–(2.15), with second-order accuracy in space. The pressure is evaluated at
points (i, j, k), which may be taken as the centrepoints of a family of cubes. The
components of velocity are evaluated at the mid-points of the edges of the cubes,
i.e. u at (i + 1/2, j, k), v at (i, j + 1/2, k) and w at (i, j, k + 1/2), and similarly for
magnetic field components. Temperature is defined at the corner points of the cubes,
i.e. at (i +1/2, j +1/2, k+1/2). The nonlinear terms in (2.12)–(2.15) are approximated
by the second-order Adams–Bashforth formula. The Crank–Nicolson scheme is used
for the remaining terms. Velocity and temperature are solved first, and then magnetic
fields. After discretization, the equations become

(�t)−1(Un+1 − Un) + 1
2
τPC(Un+1 + Un)

= − 1
2
G(Πn+1 + Πn) + 1

2
P(θn+1 + θn)ez + 1

2
PL(Un+1 + Un) + f , (A 1)

(�t)−1(θn+1 − θn) = 1
2
Ra

(
Un+1

z + Un
z

)
+ 1

2
L(θn+1 + θn) − g, (A 2)
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(�t)−1(Bn+1 − Bn) = 1
2
(En+1 Bn+1 + En Bn) + 1

2
q−1L(Bn+1 + Bn), (A 3)

DUn+1 = 0, DBn+1 = 0, (A 4)

in which f and g are the Adams–Bashforth discretizations of the nonlinear terms
(∇ × B) × B − (∇ × U) × U and U · ∇θ calculated using data from times n − 1 and n.

C, G, L and D are discretized operators corresponding to Ω̂×, ∇, ∇2, ∇ · . Also En Bn

is the discretized form of (∇ × (Un × Bn)), in which En is computed in each time step
from the velocity field Un.

We solve (A1)–(A4) by adopting a split time-step method (Dukowicz & Dvinsky
1992), which can be summarized as a two-step scheme: first, we step the Navier–
Stokes and heat equations to obtain the velocity and temperature without the pressure
term. The velocity is then corrected by the gradient of pressure, which is obtained by
solving a Poisson equation,

(I): û = Un − 1
2
�t GΠn, (A 5)

(1 + 1
2
�t τPC − 1

2
�t PL)ũ − 1

2
�t Pθn+1

= (1 − 1
2
�t τPC + 1

2
�t PL)û + 1

2
�t Pθn + �t f , (A 6)

(1 − 1
2
�t L)θn+1 − 1

2
�t Ra ũz = (1 + 1

2
�t L)θn + 1

2
�t Ra ûz − �t g, (A 7)

(II): DGΠn+1 = 2(�t)−1Dũ, (A 8)

Un+1 = ũ − 1
2
�t GΠn+1. (A 9)

From the above two steps, we update the velocity and then insert it into the induction
equation to update magnetic fields. The discretized version of the induction equation
does not preserve the condition ∇ · B = 0; to avoid this problem an artificial scalar
gradient Πb is introduced (Ramshaw 1983), and a similar split time-step method used.

(III): b̂ = Bn − 1
2
�t GΠn

b , (A 10)

(1 − 1
2
�t En+1 − 1

2
�t q−1L)b̃ = (1 + 1

2
�t En + 1

2
�t q−1L)b̂, (A 11)

(IV): DGΠn+1
b = 2(�t)−1Db̃, (A 12)

Bn+1 = b̃ − 1
2
�t GΠn+1

b . (A 13)

Note that under the perfectly conducting boundary conditions (2.16), the flux of
magnetic field in the x- and y-directions is constant, zero with our initial conditions.
This required an occasional correction to the field to avoid fluxes building up over
long runs. The code allows good flexibility in handling boundary conditions for the
velocity field, and is parallelized, using ‘Aztec’ library routines for solving sparse
matrix systems. Typical runs involved a spatial resolution of 60 × 80 × 60. The code
was tested against results in paper I and Matthews (1998).

Appendix B
In this Appendix we briefly explore an idealized αω model that can be compared

with the full three-dimensional runs. A basic model takes the form:

(∂t + RePΛ2∂y − q−1∇2)Bx = RePΛ′
1Bz, (B 1)

(∂t + RePΛ2∂y − q−1∇2)Bz = −α(z)∂yBx. (B 2)
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The Ekman component (2.20) of the fluid flow is retained and an α-effect, α(z) models
the convection. Motivated by the form of the helicity (3.15), this could be taken as
α(z) = α0 sin 2πz, with α0 < 0 (e.g. Moffatt 1978).

This model can be further approximated to give some qualitative information. If
we treat Λ2, Λ′

1 and α as constants (α being a measure of the alpha effect for low
z values), drop the ∇2 term, and take the field proportional to eiky+pt with k > 0, we
obtain a complex growth rate

p = ±
√

−ikαRe PΛ′
1 − ikRePΛ2. (B 3)

Note that k corresponds to nky in the full numerical simulation. A growing mode has
real growth rate

γ ≡ Re p =
√

1
2
k|αRePΛ′

1| (B 4)

and phase speed

c ≡ −k−1Imp =
√

1
2
k−1|αRePΛ′

1|sign(αRe PΛ′
1) + RePΛ2. (B 5)

Here we see clearly the role of the second, Ekman flux term in carrying the field in
the y-direction. For our model we have

Λ′
1 < 0, Λ2 < 0, α < 0, Re > 0, (B 6)

and so we see that the velocity of the αω-dynamo wave (first term) is in the +y-
direction, while the Ekman flux advection is in the −y-direction. There is competition
between the two to determine the overall velocity of the dynamo wave (Yoshimura
1975; Dikpati & Gilman 2001). Note that this would remain the case even if we
reverse the direction of the underlying shear flow, changing the sign of U0 and so of
only Re in (B 6). There is a phase shift between the magnetic field components of

arg(Bz/Bx) = (π/4)sign(αRe Λ′
1) − (π/2)sign α. (B 7)

Similar results are obtained when the full model (B1)–(B2) is solved numerically.
This highly simplified modelling makes contact with our dynamo simulation in two

ways. First, the phase shift between x- and z-directed field is given by 3π/4 � 2.36
which is approximately in line with the results in figure 12(c). Secondly, there is
evidence that the dynamo waves in our main simulation involve a competition between
Ekman pumping velocity (given by maxz UEk,y = − 0.3224 ReP � −9.67) and an αω

dynamo wave velocity. The reason is that for the main run, in kinematic regimes
the magnetic field has a phase velocity c1 � −1.5 whereas in the equilibrated regime
c1 � −4, which is consistent with suppression of the alpha effect (via suppression of
the convection observed) and so the αω dynamo velocity in (B5).
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